

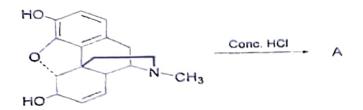
खण्ड—अ (व्याख्यात्मक) Section-A (Descriptive)

For Office Use Only

CHE 510 M.Sc. IInd SEMESTER EXAMINATION, 2022 CHEMISTRY

(Natural Products) Credit (4+0) (CBCS Mode)

Important	Instruction


The question paper is in two sections: Section-A (Descriptive) will be of 15 marks and Section-B (Objective) will be of 60 marks. Section-A will be deposited at the end of the examination and answer sheet (OMR) of Section-B will be deposited.

महत्वपूर्ण निर्देश :

प्रश्न पत्र दो भागों में हैं : खण्ड-अ (व्याख्यात्मक) 15 अंकों का होगा एवं खण्ड-ब (बहुविकल्पीय) 60 अंक का होगा। खण्ड-अ परीक्षा के अन्त में जमा कर लिया जायेगा एवं खण्ड-ब का उत्तर पत्रिका (OMR) जमा होगा।

	अन्	क्रमां	p (अंको	में)	/R	oll	No.	(In	Fi	gur	es)	:_	_	_		0
	13	T	T														5240
	00000000000	00000000000	00000	000000000000	(T) (3)	000000000000	(i) (j) (ii) (iii)	000000000000	6000	000000000000	9996	(T)	000000000000	(i) (ii) (iii) (iii)	00000000000	Time: 1 Hour समय: 1 घण्टा Max. Marks: 15 अधिकतम अंक: 15	47
R 3f Si 布器 No	— © © © अनुक्रमांक (शब्द Roll No. (In अभ्यर्थी का नाम Student Nar कक्ष परिप्रेक्षक के Note : (i) (ii) (iii) नोट : (i)				ः ord: tal N swe Qu	s):	Invi	gila Jues que cari ए गरे	tor'	s Si ns a ons qua	gna re S in al	ix. II.	:				

- 1. How will you establish that palavering contains a methylene group?
- 2. What happens when flavones are hydrolyzed with alcoholic KOH? How are hydrolysis products helpful in structure determination of flavones?
- 3. How will you show that geraniol contains a -CH2OH group?
- 4. What is product A in following reaction? Give its mechanism.

- 5. What happens when lactose is oxidized with bromine water? How will you predict that C-4 of glucose is linked to C-1 of galactose in lactose molecule?
- that C-4 of glucose is linked to C-1 of galactose in lactose molecule?

 6. How is Mevalonic acid biosynthesized from acetyl-CoA?

खण्ड—ब (बहुविकल्पीय) Section-B (Objective) CHE 510

M.Sc. IInd SEMESTER EXAMINATION, 2022 CHEMISTRY

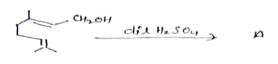
(Natural Products) Credit (4+0)

(CBCS Mode)

AFFIX PRESCRIBED RUBBER STAMP	Date(तिथि) : _	पुस्तिका सीरीज Booklet Series	Paper ID (To be filled in the OMR Sheet) 5240
अनुक्रमांक (अंकों में) : Roll No. (In Figures) [अनुक्रमांक (शब्दों में) :			
Roll No. (In Words) :_			
Time : 1½ Hrs. समय :1½घण्टे			Max. Marks : 60 अधिकतम अंक : 60

नोट :पुस्तिका में 40 प्रश्न दिये गये हैं, सभी प्रश्न करने होंगे। प्रत्येक प्रश्न 1.5 अंक का होगा।

Important Instructions:


- The candidate will write his/her Roll Number only at the places provided for, i.e. on the cover page and on the OMR answer sheet at the end and nowhere else.
- 2. Immediately on receipt of the question booklet, the candidate should check up the booklet and ensure that it contains all the pages and that no question is missing. If the candidate finds any discrepancy in the question booklet, he/she should report the invigilator within 10 minutes of the issue of this booklet and a fresh question booklet without any discrepancy be obtained.

महत्वपूर्ण निर्देश :

- अभ्यर्थी अपने अनुक्रमांक केवल उन्हीं स्थानों पर लिखेंगे जो इसके लिए दिये गये हैं, अर्थात् प्रश्न पुस्तिका के मुख्य पृष्ठ तथा साथ दिये गये ओ०एम०आर० उत्तर पत्र पर, तथा अन्यत्र कहीं नहीं लिखेंगे।
- 2. प्रश्न पुस्तिका मिलते ही अभ्यर्थी को जाँच करके सुनिश्चित कर लेना चाहिए कि इस पुस्तिका में पूरे पृष्ट हैं और कोई प्रश्न छूटा तो नहीं है। यदि कोई विसंगति है तो प्रश्न पुस्तिका मिलने के 10 मिनट के भीतर ही कक्ष परिप्रेक्षक को सूचित करना चाहिए और बिना बुटि की दूसरी प्रश्न पुस्तिका प्राप्त कर लेना चाहिए।

1.	Which	of the following alkaloid is not present in cinchona bark?
	(A)	Quinidine
	(B)	Quinine
	(C)	Quinoline
	(D)	Cinchonis
2.	Who	first coined the name alkaloids:
	(A)	S. W. Pelletier
	(B)	Fredrich Serturner
	(C)	Emil Fischer
	(D)	Robert Woodward
3.	A red	ucing sugar :
	(A)	Has fewer calories
	(B)	Is always a keton
	(C)	Reacts with Fehling's reagent
	(D)	Not reacts with Fehling's reagent
4.	Princ	iple Sugar in blood is:
	(A)	Fructose
	(B)	Glucose
	(C)	Sucrose
	(D)	Galactose

5. Give product A:

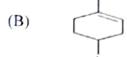
(A)

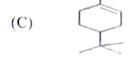
(B)

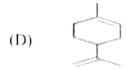
(C)

(D)

- 6. The fundamental unit in Terpenes/Terpenoids is:
 - (A) 1, 3- butadiene
 - (B) Allene
 - (C) 2- methyl -1, 3 butadiene
 - (D) None of the above
- Which is a Monosaccharide:
 - (A) Sucrose
 - (B) Maltose
 - (C) Galactose
 - (D) Cellulose


- Biosynthesis of squalene may be explained by: 8.
 - Mevalonic acid pathway (A)
 - Sikimic acid pathway (B)
 - Krebs cycle (C)
 - Poly β ketoacid pathway
- Enzymatic biosynthesis of cholesterol was given by: 9.
 - K. E. Bloch (A)
 - Robinson (B)
 - Kostenecky (C)
 - P. Koch (D)
- Following is structure of: 10.


- Lactose (A)
- Maltose (B)
- Cellulose (C)
- Sucrose (D)


- 11. Lactose on hydrolysis mainly gives:
 - (A) Fructose and Glucose
 - (B) Galactose and Glucose
 - (C) Glucose Only
 - (D) Fructose Only
- 12. "A' in following reaction is:

- (A) Citral
- (B) Limonene
- (C) Geraniol
- (D) Camphor
- 13. Structure of p-Cymene is:

14. In the following reaction "A" is:

- (A) CH₂OH
- (B) Соон
- (C)
- (D) None of the above

Monoterpenoid contains isoprene unit:

- (A) 1
- (B) 3
- (C) 2
- (D) 4

Cyanidin in acidic medium shows following colour:

- (A) Violet
- (B) Blue
- (C) Red
- (D) Yellow

Red rose contains following anthocyanin:

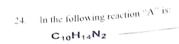
- (A) Cyanidin
- (B) Pelargonidin
- (C) Delphinidin
- (D) Peonidin

Pelargonidin is: 18.

- 3,4',5,7- tetrahydroxy flavylium chloride
- 3,3'4',5,7 pentahydrocy flavylium chloride (A)
- 3,3'4',5,5'7 hexahydrocy flavylium chloride (B)
- 3,4',5,7 tetrahydroxy -3'-methoxy flavylium chloride (C) (D)
- Parent compound in anthocyanin is: 19.
 - Flavylium chloride (A)
 - 2-Pheny1-4- chromone (B)
 - 3-Phenyl chromone (C)
 - Chromone (D)
- In the following reaction "P" is: 20.

$$\begin{array}{c} C_{17}H_{19}NO_3 \\ Morphine \end{array} \xrightarrow{KOH} P$$

21. In the following reaction "P" is:


$$\frac{C_{17}H_{19}NO_3}{Morphine} \xrightarrow{1. CH_3l} P$$

- (A) $C_{18}18_{21}NO_3$
- (B) $C_{18}H_{19}NO_3$
- (C) $C_{19}H_{24}NO_3I$
- (D) $C_{19}H_{23}NO_3$
- 22. In the following reaction "P" is:

$$\begin{array}{c} C_{17}H_{19}NO_3 \xrightarrow{CH_3l} P \\ Morphine \xrightarrow{KOH} P \end{array}$$

- (A) Codeine
- (B) Codeinone
- (C) Codeinemethiodide
- (D) Dodeimethine
- Papaverine contains following in its structure:

$$(A) \qquad \bigcap_{\substack{\textbf{N} \\ \textbf{H}}}$$

Nicotine

A

(A)

(B)

(D)

(C) COOH

25. In the following reaction "A" is:

- (A) CH₃ CH₂CH₂CH₂CH₃
- $(B) \qquad \overbrace{\text{CH}_3 \, \text{CH}_2 \text{CH}}^{\text{CH}_3} \underbrace{\text{CH}_3}_{\text{CH}_3}$
- (C) $CH_3CH_2CH_2CH_2C_2H_5$
- (D) $CH_3 CH_2CH_2CH_2CH_2-CH_3$

Series-C

5240 / CHE 510

Page - 10

F*	C	5240 / CHE 510
		Page - 11
	(D)	Ziesel
	(C)	Hofmann
	(B)	Emde
	(A)	Herzig-Meyer
	cyclic	nature of nitrogen:
28.	In the	absence of β -hydrogen following method is used for determination of
	(D)	Rauwolfia serpentina
	(C)	Nicotiana tobacum
	(B)	Papaver somniferum
	(A)	Conium maculatum
27.	Botani	ical name of opium is:
	(D)	Quinine
	(C)	Morphine
	(B)	Nicotine
	(A)	Coniine
26.	Greek	philosopher Socrate was found dead after taking extract of:

29. In the following reaction final product "A" is:

Hofmann's exhaustive methylation

A

(B)

(C)

(D)

- 30. The presence of N-methyl groups and their number may be confirmed by means of:
 - (A) Herzig-Meyer method
 - (B) Ziesel method
 - (C) Bragmann method
 - (D) Emde method
- Liquid alkaloid is:
 - (A) Morphine
 - (B) Nicotine
 - (C) Reserpine
 - (D) Quinine

32.	Follow	ring is volatile:	
	(A)	Coniine	
	(B)	Papaverine	
	(C)	Morphine	
	(D)	Quinine	
33.	Phena	nthrene skeleton is present in:	
	(A)	Papavrine	
	(B)	Nicotine	
	(C)	Morphine	
	(D)	Coniine	
34.	Numb	per of methoxy group in papaverine are:	
	(A)	One	
	(B)	Two	
	(C)	Three	
	(D)	Four	
35.	Ziese	el test is used for identification of:	
	(A)	Methylene group	
	(B)	Methoxy group	
	(C)	Carbonyl group	
	(D)	Carboxyl group	
36.	Flav	vonol is:	
	(A)	6 - hydroxy flavone	
	(B)	7 - hydroxy flavone	
	(C)	3 - hydroxy flavone	
	(D)	5 - hydroxy flavone	
		5240 / CHE 510	Page - 13
Se	eries-C		

37	7. Ch	rysin is:
	(A)	
		any drony havens
	(B)	o, v dilly droxy havens
	(C)	6, 7 - dihydroxy flavone
	(D)	3, 5 - dihydroxy flavone
38.	Diac	cetyl derivative of morphine is:
	(A)	Papaverine
	(B)	Thebaine
	(C)	Heroin
	(D)	Codeine
39.	Whic	h is not characteristic feature of alkaloid?
	(A)	Complex molecular structure and nitrogen in the molecule
	(B)	Biosynthetically derived
	(C)	Basic in nature
	(D)	Acidic in nature only
40.	Flavor	nes on treatment with conc. HCl Produce brilliant color compound, which
	indica	te the presence of:
	(A)	α - Pyrone system
	(B)	Primary amine
	(C)	β - Pyrone
	(D)	γ- Pyrone ring

खण्ड–अ (व्याख्यात्मक) Section-A (Descriptive)

Important Instruction:

Section-A (Descriptive) will be of 15

सभी प्रश्नों के अंक समान है।

(iii)

For Office Use Only

महत्वपूर्ण निर्देश :

(व्याख्यात्मक) 15 अंकों का होगा एवं

CHE 509

M.Sc. Hnd SEMESTER EXAMINATION, 2022

Chemistry

(Transition Elements)

(Credit 4+0)

(CBCS Mode)

The question paper is in two sections: प्रश्न पत्र दो भागो में है : खण्ड-अ

	ma be de an wi	of pos d a ll b	s a f 6 itec nsv e de	nd 0 1 1 at ver epos	Sec nar the she	ks. en et (Se d of OM	(O ctio the IR)	n-A exa of	ami Sec	ill nat tion	be ion 1-B	ख हो ज	ण्ड- गा मा	−ब र कर	(बहुविकल्प खण्ड—अ प र लिया जा पत्रिका (O	ीय) 60 उ रीक्षा के व येगा एवं	प्रंक का अन्त में खण्ड-ब
31	नुक्र	मांक	(अंव	गेंमें)	/ R	oll	No.	(ln	Fi	gur	es)	:	_		_			œ
										ş								198
	3 4 5 6 7	0000000	0000000	0000000	999999	0000000	909000	999999	999999	0000000	9000000	0000000	90000	000000	0000	अधिकत		3
अनुक्र Roll अभ्यश Stud	IN If a	o. ((In) गम :	Wo	rds):_												
कक्ष Note नोट	e :	(i) (ii) (iii)		An All	tal I swo Qu B:	No. er th iesti प्रश्	of (Que: que car ए ग	stio estic ry c 社 喜	ns a ons equa l	re S in a	ix. II. ark:					Booklet (अम्यर्थी द्व भरा जा	ारा स्वयं

-	198 CHE 509 Page - 1
	Description of the state of the
	and the second s
-	
	complexes.
	Explain the role of central metal ions in determining the stability constant of metal
	and kinetic stability constants?
	A. A. L. ampleyer
}. 5.	Describe dissociative and associative mechanism of substitution reactions in
	Explain the factors affecting the rates of direct electron transfer reaction.
	Give a detailed account of complimentary and non complimentary reaction with
	Dispuse the different mechanism for explaining the molecular rearrangement.
	What are the facts important for stabilisation of higher coordination number?

खण्ड–ब (बहुविकल्पीय)

Section-B (Objective)

CHE 509

M.Sc. IInd SEMESTER EXAMINATION, 2022

Chemistry

(Transition Elements)

(Credit 4+0)

(CBCS Mode)

AFFIX PRESCRIBED RUBBER STAMP	Date(तिथि) :	पुस्तिका सीरीज Booklet Series	Paper ID (To be filled in the OMR Sheet) 5198
अनुक्रमांक (अंकों में) : Roll No. (In Figures) अनुक्रमांक (शब्दों में) :			
Roll No. (In Words):_ Time: 1½ Hrs.			Max. Marks : 60 अधिकतम अंक : 60
समय :1½घण्टे		्रोते । प्रत्येक प्रश्न	

नोट :पुस्तिका में 40 प्रश्न दिये गये हैं, सभी प्रश्न करने होंगे। प्रत्येक प्रश्न 1.5 अंक का होगा।

Important Instructions:

- 1. The candidate will write his/her Roll Number only at the places provided for, i.e. on the cover page and on the OMR answer sheet at the end and nowhere else.
- 2. Immediately on receipt of the question booklet, the candidate should check up the booklet and ensure that it contains all the pages and that no question is missing. If the candidate finds any discrepancy in the question booklet, he/she should report the invigilator within 10 minutes of the issue of this booklet and a fresh question booklet without any discrepancy be obtained.

महत्वपूर्ण निर्देश :

- अभ्यर्थी अपने अनुक्रमांक केवल उन्हीं स्थानों पर लिखेंगे जो इसके लिए दिये गये हैं, अर्थात् प्रश्न पुस्तिका के मुख्य पृष्ठ तथा साथ दिये गये ओ०एम०आर० उत्तर पत्र पर तथा अन्यत्र कही नहीं तिखेंगे।
- प्रश्न पुस्तिका मिलते ही अभ्यर्थी को जाँच करके सुनिश्चित कर लेना चाहिए कि इस पुस्तिका में पूरे पृष्ठ हैं और कोई प्रश्न छूटा तो नहीं है। यदि कोई विसंगति है तो प्रश्न पुरितका मिलने के 10 मिनट के भीतर ही कक्ष परिप्रेक्षक को सूचित करना चाहिए और बिना बुटि की दूसरी प्रश्न पुस्तिका प्राप्त कर लेना चाहिए।

1.	Design	ate the following complexes X.Y and Z as inert or lable $X=[A1(C_2O_4)_3]^{3-}$,
	Y=[V($H_2O_{6}]^{2+}, Z=[Cr(C_2O_4)_3]^{3-}$
	(A)	X and Y are inert; Z is labile
	(B)	X and Y are labile; Y is inert
	(C)	X is inert; Y and Z are labile
	(D)	X is labile; Y and Z are inert
2.	The ra	ate of exchange of cyanide ligands in the complexes-
	(i)	$[Ni(CN)_4]^{2^-}$
	(ii)	$[Mn(CN)_6]^{3-}$
	(iii)	$[Cr(CN)_6]^3$ by ^{14}CN follow the:
	(A)	(ii) > (i) > (iii)
	(B)	(iii) > (i) > (ii)
	(C)	(i) > (iii) > (ii)
	(D)	(i) > (ii) > (iii)
3.	Cis	(i) > (ii) > (iii) and trans complexes of the type [PtA ₂ X ₂]are distinguished by:
	(A)	Chromyl chloride test
	(B)	Carbylamine test
	(C) Kurna kov test
	(D	Ring test (neac= actylacetonate) is:
4	4. Tł) Ring test ne number of possible isomers of [Ru(PPh ₁) ₂ (acac) ₂] (acac= actylacetonate) is:
	(A	
	(I)	3) 3
	(0	C) 4

(D)

5

- The chromium (III) species formed soon after electron transfer between [IrCl₆]²-
- and [Cr(H2O)6]2+ is:

5.

- Cr(H₂O)6³⁺ (A) $Cr(H_2O)s^{2+}$
- (B) CrCl₆³⁻
- The mechanism of the reaction between $[Fe(CN)_6]^{4-}$ and $[Fe(bpy)_3]^{3+}$ (bpy=2,2'. 6.
 - bipyridine is)
 - Outer-sphere electron transfer (A) Inner -sphere electron transfer
 - (B)
 - Self-exchange reaction Legrand- exchange followed by electron transfer (C)
- Coordinate water molecules of Cd (II) complex can be successively replaced by 7.
 - Br finally to result [Cd Br4]2, in this process, the fourth equilibrium constant is
 - observed to be higher than the third one, because:
 - Equilibrium constant for the last step is always the highest (A)
 - Three molecules of H₂O are released during the fourth step (B)
 - The aqua Cd (II) species is octahedral (C) An anion (Br) replaces a neutral (H2O) molecule from coordination (D) sphere
- The possible geometries for complexes with co-ordine number 7 8.
 - Pentagonal bi pyramidal (A) Capped octahedron
 - (B) Capped trigonal prism (C)
 - All of the above (D)

	Marcus	s-Hush theory applies to :
9.	(A)	Any electron transfer reaction
	(B)	Outer sphere electron transfer
	(C)	Inner sphere electron transfer
	(D)	All biological redox reactions
	How.	All biological redox reactions are the stepwise stability constants (K) related to the overall stability
10.	const	ant (β) ?
	(A)	$\beta = K_1 + K_2 + \dots + K_n$
	(B)	2 - W × Wa××Kn
	(D)	$\beta_n = 1/(K_1 + K_2 + \dots + K_n)$
11	The	$\beta_n = \log K_1 + \log K_2 + \log K_3 + \log K_4$ $\beta_n = 1/(K_1 + K_2 + \dots + K_n)$ existence of two different coloured complexes of $[Co^{2+}(NH_3)_4Cl_2]$ is due
	to	
	(A)	Geometrical isomerism
	(B)	Linkage isomerism
	(C)	Optical isomerism Coordination isomerism coctahedral complex having the following equilibrium constant: Koordination isomerism Koordination isomerism
	(D)	Coordination isolated Coordination is a complex having the following equinores
1	2. The	e octahedral complete with the contract of the
	K	$\frac{K_2}{1} = \frac{K_3}{10^2} = \frac{10^4}{10^4} = \frac{10^4}{10^4}$
	10	103 10
	W	hat is the value of Kstable?
	(A	10^{12}
	(E	107
		C) 10 ⁵
	a	D) 10 ⁻⁵ is sized the relationship:
	12 1	and Hush derived dis
	13. N	$\frac{1}{12} \int_{-\infty}^{\infty} \frac{1}{12} K_{12} K_{12} f \int_{-\infty}^{\infty} \frac{1}{12} f \int_{-\infty}^{\infty} \frac{1}{12}$

Marcus and Hush
$$a$$

(A) $k_{12} = [k_{11} \ k_{22} K_{12} f]^{1/2}$

(A)
$$k_{12}=k_{11}+K_{22}$$

(C)
$$K_{12} = \frac{K_{11}}{K_{22}}$$

(C)
$$k_{12} = [k_{11}k_{22}K_{12}f]^2$$

- 14. Which of the following compounds has a meridional isomer?
 - $(A) \qquad [Fe(NO)_5Br]^+$
 - (B) $[Al(CO)_3(NO_2)_3]$
 - (C) $[K(NH_3)_4(NO)_2]^+$
 - (D) $[Fe(H_2O)_2(Co)_2(NO)_2]^{3+}$
- 15. The CORRECT order of the trans effect is :
 - (A) $CN>NO_2>CI>NH_3$
 - (B) NH₃> NO₂> CN> Cl⁻
 - (C) NO₂> CI> CN> NH₃
 - (D) CI> NO₂> CN> NH₃
- 16. The CORRECT order of the rate of exchange of water molecules between the coordination sphere and the bulk is:
 - (A) $Cr^{3+} < Al^{3+} < Cr^{2+} < Ni^{2+}$
 - (B) $Cr^{3+} < Al^{3+} < Ni^{2+} < Cr^{2+}$
 - (C) $Cr^{3+} < Ni^{2+} < Cr^{2+} < Al^{3+}$
 - (D) $Cr^{3+} < Cr^{2+} < Al^{3+} < Ni^{2+}$
- Consider the following pairs of complexes-

 $[CoF(NH_3)_5]^{2*}$ and $[Cr(OH_2)_6]^{2*}$;

 $[Co(NH_3)_5(OH_2)]^{3+}$ and $[Cr(OH_2)_6]^{2+}$;

 $[Co(NH_3)_6]^{3*}$ and $[Cr(OH_2)_6]^{2*}$;

 $[Col(NH_3)_5]^{2+}$ and $[Cr(OH_2)_6]^{2+}$

The electron transfer rate will be fastest in the pair:

- (A) $[CoF(NH_3)_5]^{2+}$ and $[Cr(OH_2)_6]^{2+}$
- (B) $[Co(NH_3) \circ (OH_2)]^{3+}$ and $[Cr(OH_2) \circ]^{2+}$
- (C) $[Co(NH_3)_6]^{3+}$ and $[Cr(OH_2)_6]^{2+}$
- (D) $[Col(NH_3)_5]^{2^n}$ and $[Cr(OH_2)_6]^{2^n}$

		the state by 180H2 of -
18.	The rat	te of exchange of OH_2 present in the coordination sphere by $^{18}OH_2$ of -
	(i)	$[Cu(OH_2)_6]^{2+}$
	(ii)	$[Mn(OH_2)_6]^{2+}$
	(iii)	$[Fe(OH_2)_6]^{2+}$
	(iv)	$[Ni(OH_2)_6]^{2+}$
	follov	vs an order:
	(A)	(i) > (ii) > (iii) > (iv)
	(B)	$(i) \ge (iv) \ge (iii) \ge (ii)$
	(C)	(ii) > (iii) > (iv) > (i)
	(D)	(iii) > (i) > (iv) > (ii) $(iii) > (i) > (iv) > (ii)$ $(iii) > (i) > (iv) > (iii)$ $(iii) > (iv) > (iv) > (iii)$
19.	The	(iii) > (i) > (iv) > (ii) substitution reaction of $[Co(CN)_5Cl]^3$ with OH to give $[Co(CN)_5OH]^3$ in
	com	earison to that [Co(NH ₃) ₅ CI] ² to give [Co(NH ₃) ₅ CI] ²
	(A)	Slow and the rate depends on [Co(CN)301]
	(B)	Expend the rate depend only on [Co(CN)5C1]
	(C)	Class and the rate depends on [Co(CN)(CI)] and OTT
	,	Coll Nic II and Or.
20). In the	he inner sphere reduction of [Co(NH ₃) ₅ CI] ² With [CI(O12) ₅]
	(A)	Bridges the metal centers only
	(B)	Mediates electron transfer only
	(C)	t modiates electron transfer both
		· · · · · · · · · · · · · · · ·
1	21. Th	Does not play any role acid catalyzed hydrolysis of trans - $[Co(en)_2 AX]^{n+}$ can give cis-product
	als	so due to the formation of:
	(A	Square pyramidal intermediate
	(I	3) Trigonal bi pyramidal intermediate
	(C) Pentagonal bipyramidal intermediate
	(D) Face capped octahedral intermediate

22.	React	Reaction of $[CoCl(NH_3)_5]^{2+}$ by Cr^{2+} (aq.) leads to the formation $[CrCl(H_2O)_5]^{2-}$									
	This is an example of:										
	(A)	Outer - sphere redox reaction									
	(B)	Inner-sphere redox reaction									
	(C)	Acid hydrolysis reactions									
	(D)	Base hydrolysis reaction									
23.	Reaction of $[CoCl(NH_3)_5]^{2+}+OH^-$ giving $[Co(OH)(NH_3)_5]^{2+}$ follows a										
	mecha	unistic pathway which is									
	(A)	$S_N I$									
	(B)	$S_N 2$									
	(C)	S_N1CB									
	(D)	$S_E 2$									
24.	Electron transfer from $[Fe(H_2O)_6]^{2+}$ to $[Fe(H_2O)_6]^{3+}$ is likely to occur via :										
	(A)	d-d transition									
	(B)	Inner sphere electron transfer									
	(C)	SN ₁ mechanism									
	(D)	Outer sphere electron transfer									
25.	Find mechanisms that are used to explain the isomerisation of the octahedral										
	compl	exes with chelating ligands:									
	(A)	The berry pseudo rotation mechanism									
	(B)	The bailor twist and Ray-Dutt twist.									
	(C)	The Thompson mechanism									
	(D)	None of the above									
26.	In the following reaction $[PtCl_4]^2 + NO_2 \rightarrow A \xrightarrow{NH_3} B$										
	(A)	trans - $[PtCl_2(NO_2)(NH_3)]^{-1}$									
	(B)	cis - $[PtCl_2(NO_2)(NH_3)]^{-1}$									
	(C)	trans - $[PtCl_2(NH_3)_2]$									
	(D)	$cis - [PtCl_2(NO_2)_2]^{2-}$									

27. Which one of the following compounds has optical isomers?
(A) Trans $[Co(en)_2Cl_2]^+$
(B) $[PtCl_2(NH_3)_2]$
(C) $[Co(en)_3]^{3+}$
(D) [Fe $(\eta^5 - C_5H_5)_2$]
28. Identify X in the reaction [Pt(NH ₃) ₄] ²⁺ +2HCl→X
(A) $\operatorname{cis}\left[\operatorname{PtCl}_2(\operatorname{NH}_3)_2\right]$
(B) trans [Pt $Cl_2(NH_3)_2$]
group).l ⁺
(D) [PtCl ₃ (NH ₃)]
(C) [PtCl ₃ (NH ₃)] ⁻ (D) [PtCl ₃ (NH ₃)] ⁻ 29. The octahedral complex / complex ion which shows both facial and meridional
and is
: -to coball (III)
(B) Tris (ethylene diamine et a cobalt (III)
(B) Tris (ethylette) (C) Dichlorodiglycinato cobalt (III) (C) Dichlorodiglycinato cobalt (III) (Mabe de f] ^{n*} type
(D) Trioxalato cobait ate(15)
(C) Dichlorodiglycinato county (D) Trioxalato cobalt ate(III) (D) Trioxalato cobalt ate(III) The possible number of geometrical isomers of the type [M a b c d e f] ⁿ⁻ type
complexes are:
(A) 30
(B) 15
(C) $\frac{20}{10}$
(C) 20 (D) 10 31. The number of possible isomers for [Ru(bpy) ₂ Cl ₂] is (bpy=2,2' bipyridine)
(D)
Page
5198 / СТП
Series-C

Ser	ies-C	5198 / CHE 509 Page - 10						
	(D)	None of these						
	(C)	Optical activity						
	(B)	Concentration of the solution						
	(A)	p ^H of the solution						
		lex by change in :						
36.	Bjerrum's method is used to determine the stability constant of the met							
	(D)	None of these						
	(C)	Both (A) and (B)						
	(B)	Charge - to radius -ratio concept						
	(A)	Radius ratio concept						
35.	Irving	-William order of stability is related with .						
	(D)	None of these						
	(C)	Both (A) and (B)						
	(B)	Outer sphere electron transfer reaction						
	(A)	Inner sphere electron transfer reaction						
34.	The reaction where bonds are neither made nor broken is.							
	(D)	Both (A) and (B)						
	(C)	T- shaped						
	(B)	Trigonal Pyramidal						
	(A)	Trigonal Planar						
33.		eometrics corresponding to coordination number 3 are.						
	(D)	Cu (I) and Hg (II)						
	(C)	Cd (I) and Hg (I)						
	(B)	Cu (II) and Hg (I)						
	(A)	Cd (II) and Hg (II)						
32.	The pa	air of ions that most commonly forms with coordination number 2 is :						

37.	In Job's method, the stability constant of the complex compound is determined										
	by the	change in :									
	(A)	Concentration									
	(B)	Absorbance									
	(C)	Both (A) and (B)									
	(D)	None of these									
38.	The ra	ndius-ratio for cubic system ranges:									
	(A)	0.732 to 1.00									
	(B)	0.155 to 0.225									
	(C)	0.414 to 0.732									
	(D)	None of these									
39.	The s	ubstitutionally inert complex ion amongst the following is:									
	(A)	$[Cr(H_2O)_6]^{3+}$									
	(B)	$[Fe(H_2O)_6]^{2+}$									
	(C)	$[Cr(H_2O)_6]^{2+}$									
	(D)	$[Ni(H_2O)_6]^{2+}$									
40.	The	existence of two different colored complexes of Co(NH ₃) ₄ Cl ₂ is due to:									
	(A)	Optical isomerism									
	(B)	Linkage isomerism									
	(C)	Geometrical isomerism									
	(D)	Coordination isomerism									
		* * * * *									

खण्ड—अ (व्याख्यात्मक) Section-A (Descriptive)

For Office Use Only

CHE 508 M.Sc. IInd SEMESTER EXAMINATION, 2022 CHEMISTRY

(Thermodynamics and Electrochemistry)
Credit (4+0)

(CBCS Mode)

mportant	Instruction:
----------	--------------

The question paper is in two sections: Section-A (Descriptive) will be of 15 marks and Section-B (Objective) will be of 60 marks. Section-A will be deposited at the end of the examination and answer sheet (OMR) of Section-B will be deposited.

महत्वपूर्ण निर्देश :

प्रश्न पत्र दो भागो में है : खण्ड-अ (व्याख्यात्मक) 15 अंकों का होगा एवं खण्ड-ब (बहुविकल्पीय) 60 अंक का होगा। खण्ड-अ परीक्षा के अन्त में जमा कर लिया जायेगा एवं खण्ड-ब का उत्तर पत्रिका (OMR) जमा होगा।

	अनु	क्रमां	क (अंको	में)	/ R	oll	No.	(In	Fi	gui	es)	:			
																45
	000000000000	000000000000	600	⑦ ⑧	9999	0000	999999	00000000000	000000	00000	9999	000000000000	000000	00000	000000	Time: I Hour समय: 1 घण्टा Max. Marks: 15 अधिकतम अंक: 15
	_		(शब्द													
317	on म्यर्धी	NO. का	(In	: _	ord	s):	-									
S	ude	ent	Nar	ne												
कें	Student Name : कक्ष परिप्रेक्षक के हस्ताक्षर / Invigilator's Signature :															
No	te:	1.1)ue:								
(ii) Answer three questions in all. (iii) All Questions carry equal marks. नोट: (i) कुल छ प्रश्न दिए गये हैं। (ii) किन्हीं तीन प्रश्नों के उत्तर दीजिए। (iii) सभी प्रश्नों के अंक समान हैं।																

1.,	Discuss stern model of electrical double layer.
2.	Discuss variation of fugacity with pressure.
3.	Explain Debye-Falkenhagen effect.
4.	Discuss dropping mercury electrode (DME).
5.	Explain Nernst-Heat theorem.
6.	Discuss over-voltage and its application.
_	
C ₂	

खण्ड—ब (बहुविकल्पीय) Section-B (Objective) CHE 508

M.Sc. IInd SEMESTER EXAMINATION, 2022 CHEMISTRY

(Thermodynamics and Electrochemistry) Credit (4+0) (CBCS Mode)

Paper ID (To be filled in the OMR Sheet)

3 नुक्रमांक (अंकों में) :
Roll No. (In Figures) :
अनुक्रमांक (शब्दों में) :
Roll No. (In Words) :

Time : 1½ Hrs.
समय : 1½ घण्टे

नोट : पुस्तिका में 40 प्रश्न दिये गये हैं, सभी प्रश्न करने होंगे। प्रत्येक प्रश्न 1.5 अंक का होगा।

Important Instructions :

- The candidate will write his/her Roll Number only at the places provided for, i.e. on the cover page and on the OMR answer sheet at the end and nowhere else.
- 2. Immediately on receipt of the question booklet, the candidate should check up the booklet and ensure that it contains all the pages and that no question is missing. If the candidate finds any discrepancy in the question booklet, he/she should report the invigilator within 10 minutes of the issue of this booklet and a fresh question booklet without any discrepancy be obtained.

महत्वपूर्ण निर्देश:

- अभ्यर्थी अपने अनुक्रमांक केवल उन्हीं स्थानों पर लिखेंगे जो इसके लिए दिये गये हैं, अर्थात् प्रश्न पुस्तिका के मुख्य पृष्ठ तथा साथ दिये गये ओ०एम०आर० उत्तर पत्र पर तथा अन्यत्र कहीं नहीं लिखेंगे।
- 2. प्रश्न पुस्तिका मिलते ही अध्यर्थी को जाँच करके सुनिश्चित कर लेना चाहिए कि इस पुस्तिका में पूरे पृष्ठ है और कोई प्रश्न छूटा तो नहीं है। यदि कोई विसंगति है तो प्रश्न पुस्तिका मिलने के 10 मिनट के मीतर ही कक्ष परिप्रेक्षक को सूचित करना चाहिए और बिना ब्रुटि की दूसरी प्रश्न पुस्तिका प्राप्त कर लेना चाहिए।

- 1. Dropping Mercury Electrode (DME) is used in :
 - (A) Conductiometry
 - (B) Potentiometry
 - (C) Polarography
 - (D) None of the above
- 2. In which of the following relation $\left(\frac{\partial P}{\partial T}\right)_{V}$ equals to:
 - (A) $\left(\frac{\partial S}{\partial V}\right)_T$
 - (B) $\left(\frac{\partial V}{\partial S}\right)_T$
 - (C) $\left(\frac{\partial T}{\partial s}\right)_V$
 - (D) $\left(\frac{\partial s}{\partial \tau}\right)_P$
- 3. In the representation of call, the electrode on the right side is written in the order:
 - (A) Ion, electrode
 - (B) Electrode, ion
 - (C) Both (A) and (B)
 - (D) None of the above
- 4. The third law of thermodynamics states that :
 - (A) If object A is in thermal equilibrium with object B, and object B is in thermal equilibrium with object C, then object A is in thermal equilibrium with object C
 - (B) The entropy of the universe increases far reversible processes
 - (C) $\Delta S = 0$ far a pure element in its most stable state at stander conditions
 - (D) S = 0 far a perfect crystal of a pure substance at 0K

- 5. In which of the followings is not the correct equation?
 - (A) H = E + PV
 - (B) A = H TS
 - (C) dE = TdS PdV
 - (D) H = G + TS
- 6. The partial molar volume of component 1 in the mixture of 2 component system is:
 - (A) $V_1, m = (\partial V/\partial n_2)_{T,P,n_1}$
 - (B) $V_1, m = (\partial V/\partial n_1)_{T,P,n_1}$
 - (C) $V_1, m = (\partial V/\partial n_1)_{T,P,n_2}$
 - (D) $V_1, m = (\partial V/\partial n_2)_{T,P,n_2}$
- 7. Entropy is an:
 - (A) Intensive property
 - (B) Extensive property
 - (C) Colligative property
 - (D) None of the above
- 8. If the metal M is made the cathode in electrochemical cell, then the reaction will be:
 - $(A) \qquad M \to M^+ + e^-$
 - (B) $M^+ + e^- \rightarrow M$
 - (C) $M \rightarrow O_2$
 - (D) None

- Joule Thomson effect is based upon _____?
 - (A) Sudden compression of gases
 - (B) Sudden expansion of gases
 - (C) Cooling of gases
 - (D) Heating of gases
- 10. Correct Gibbs-Duhem equation is written as:

(A)
$$-SdT + VdP - \sum n_i d\mu_i = 0$$

(B)
$$-SdT + VdP - \sum n_i d\mu_i = 1$$

(C)
$$-SdT - VdP + \sum n_i d\mu_i = 0$$

(D)
$$-SdT - VdP + \sum n_i d\mu_i = 1$$

- 11. If s orientations are possible far a molecule the molar residual entropy will be :
 - (A) $S_m = R l_n K$
 - (B) $S_m = R l_n K^2$
 - (C) $S_m = R l_n s^2$
- 12. Which of the following laws was formulated by Nernst?
 - (A) First law of thermodynamics
 - (B) Second law of thermodynamics
 - (C) Third law of thermodynamics
 - (D) Zero law of thermodynamics

13. In one of the Maxwell's relations $\left(\frac{\partial T}{\partial V}\right)_S$ equals to :

(A)
$$-\left(\frac{\partial P}{\partial s}\right)_V$$

(B)
$$-\left(\frac{\partial v}{\partial s}\right)_p$$

(C)
$$\left(\frac{\partial P}{\partial T}\right)_V$$

(D)
$$-\left(\frac{\partial V}{\partial T}\right)_{P}$$

14. The absolute entropy of the substance at temperature T can be calculated by:

(A)
$$\dot{S}(T) = \int_0^T \frac{c_P}{T} dT$$

(B)
$$\dot{S}(T) = \int_0^T \frac{c_V}{\tau} dT$$

(C)
$$\dot{S}(T) = \int_0^T \frac{T^2}{c_V} dT$$

(D)
$$\dot{S}(T) = \int_0^T \frac{T^2}{C_P} dT$$

15. Mathematically the Nernst Heat theorem may be expressed as :

(A)
$$\lim_{T \to 0} \left[\frac{\partial (\Delta T)}{\partial G} \right]_{P} = 0$$

(B)
$$\lim_{T\to 0} \left[\partial \left(\Delta H/\Delta_G\right)\right]_T = 0$$

(C)
$$\lim_{T \to 0} \left[\partial \left(\Delta G / \partial T \right) \right]_{p} = 0$$

(D)
$$\lim_{T \to 0} \left[\partial \left(\frac{\Delta G}{\Delta H} \right) \right]_T = 0$$

16.	In DME th	e calome	electrode	is	used	as	:
10.							

- Cathode (A)
- Anode (B)
- Supporting electrode (C)
- None of the above (D)

Which of the following is residual entropy of substance? 17.

- Entropy of perfect solid equal to 0 at T = 0(A)
- Entropy of solid equal to 0 at T = 273 K(B)
- Entropy of perfect solid greater than zero at T = 273 K(C)
- Entropy of solid greater than 0 at T = 0 K(D)

18. In one of the Maxwell's relations
$$\left(\frac{\partial S}{\partial P}\right)_T$$
 equals to :

- (A) $\left(\frac{\partial V}{\partial T}\right)_V$
- (B) $-\left(\frac{\partial V}{\partial T}\right)_{P}$
- (C) $\left(\frac{\partial P}{\partial T}\right)_V$
- (D) $-\left(\frac{\partial \tau}{\partial v}\right)_{s}$

(D)
$$-\left(\frac{\partial T}{\partial V}\right)_S$$

19. It Q_M and Q_{OHP} are respectively the excess charge density, Q_M on metal and excess charge density on OHP, Q_{OHP} , then which is correct in the case of Helmholtz-Perrin theory:

- $Q_{OHP} < Q_M$ (A)
- (B) $Q_{OHP} > Q_M$
- $Q_{OHP} = -Q_M$ (C)
- None of these (D)

- 20. The correct Clapeyron equation is:
 - $(A) \qquad \frac{dP}{dT} = \frac{\Delta V_m}{T\Delta H_m}$
 - (B) $\frac{dP}{dT} = \frac{T\Delta V_m}{\Delta H_m}$
 - $(C) \qquad \frac{dP}{dT} = \frac{\Delta H_m}{T \Delta V_m}$
 - (D) $\frac{dP}{dT} = \frac{\Delta H_m}{\Delta V_m}$
- 21. Suppose the metal is made the anode and potential applied is slightly greater than the reversible potential then:
 - (A) There will be increase in the concentration of ions
 - (B) There will be no change
 - (C) There will be fall in concentration of ions
 - (D) None of the above
- 22. Joule Thomson coefficient far an ideal gas is:
 - (A) Higher than zero
 - (B) Less than zero
 - (C) Zero
 - (D) One
- 23. Which of the following models of electrical double layers is known as diffuse double layer theory?
 - (A) Helmholtz-Perrin mode
 - (B) Stern model
 - (C) Gouy-Chapman model
 - (D) None of these

- 24. If C_H and C_G respectively are the Helmholtz-Perrin capacity and Gouy-Chapman capacity, then stern model suggests that the total differential capacity, C of the interface is given by:
 - (A) $C = C_H + C_G$
 - (B) $C = \frac{1}{c_H} + \frac{1}{c_G}$
 - (C) $\frac{1}{c} = \frac{1}{c_H} + \frac{1}{c_G}$
 - (D) $\frac{1}{c} = C_H + C_G$
- 25. The increase in the conductivity of an electrolyte solution when the applied voltage has a very high frequency is known as:
 - (A) Wein effect
 - (B) Debye-Huckel-Onsagar theory
 - (C) Debye-Falkenhagen effect
 - (D) Ostwald's dilution law
- 26. Which in the following equations explains the variation of fugacity with temperature at constant pressure?

(A)
$$\left(\frac{\partial lnf}{\partial T}\right)_{R} = \frac{H_0 - H}{RT}$$

(B)
$$\left(\frac{\partial lnf}{\partial T}\right)_P = \frac{H_0 - H}{RT^2}$$

(C)
$$\left(\frac{\partial lnf}{\partial T}\right)_P = \frac{H - H_0}{T^2}$$

(D)
$$\left(\frac{\partial lnf}{\partial T}\right)_{P} = \frac{H_0 - H}{R}$$

- 27. In streaming potential, the potential is developed due to :
 - (A) Flow of liquid
 - (B) Applied potential
 - (C) Movement of solid particles
 - (D) None of these
- 28. Streaming potential is directly related to the zeta potential by the equation:
 - $(A) S = \frac{\xi PD}{4\pi\eta K}$
 - (B) $S = \frac{\xi P}{4\pi\eta}$
 - (C) $S = \frac{4\pi\eta}{\xi P}$
 - (D) None of these
- 29. Which is correct for Gouy-Chapman model for electrical double layer:
 - (A) Excess charge density on OHP, $Q_{OHP} = -Q_M$
 - (B) Excess charge density on OHP, $Q_{OHP} < Q_M$
 - (C) Excess charge density on OHP, $Q_{OHP} > Q_M$
 - (D) None of these
- 30. In which model of the electrical double layer, the potential falls very sharply along the straight line:
 - (A) Stern Model
 - (B) Helmholtz-Perrin model
 - (C) Gouy-Chapman model
 - (D) All of the above

31.	Activity of a substance in its standard state must be equal to:	
	(A)	0
	(B)	2
	(C)	1
	(D)	1 · 2
32.	Which	of the following equation is used for determine zeta potential in the case
	of elec	etro-osmosis ?
	(A)	$\xi = \frac{4\pi\eta\mu_e}{D}$
	(B)	$\xi = \frac{2DE}{QP}$
	(C)	$\xi = \frac{\pi r^2 P}{2DE}$
	(D)	None of these
33.	The to	otal differential capacity of an electrified interface is given by Helmholtz
	and G	ouy capacities in series. This statements is related to:
	(A)	Helmholtz-Perrin model
	(B)	Gouy-Chapman model
	(C)	Stern model

(C)

(D)

None of these

- 34. The Joule Thomson coefficient it:
 - (A) $\left(\frac{\partial T}{\partial P}\right)_H$
 - (B) $\left(\frac{\partial P}{\partial T}\right)_H$
 - (C) $\left(\frac{\partial H}{\partial P}\right)_T$
 - (D) $\left(\frac{\partial H}{\partial T}\right)_{F}$
- 35. The conductance of a strong electrolyte in aqueous solution increases to a certain limiting value with increase in potential gradient applied. This observation is known as:
 - (A) Debye-Huckel theory
 - (B) Debye-Falkenhagen effect
 - (C) Wein effect
 - (D) None of these
- 36. Which of the following is not Maxwell relation?

(A)
$$\left(\frac{\partial T}{\partial V}\right)_S = \left(\frac{\partial P}{\partial S}\right)_V$$

(B)
$$\left(\frac{\partial T}{\partial P}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_T$$

(C)
$$\left(\frac{\partial S}{\partial V}\right)_T = -\left(\frac{\partial P}{\partial T}\right)_V$$

(D) All of above

37. The change of fugacity with pressure can be expressed by the equation :

(A)
$$\ln \left(\frac{f_1}{f_2} \right) = \frac{1}{RT} \int_{p_1}^{p_2} V dp$$

(B)
$$\ln \left(\frac{f_2}{f_1} \right) = \frac{1}{RT} \int_{P_1}^{P_2} V dp$$

(C)
$$\ln \left(\frac{f_2}{f_1}\right) = RT \int_{p_1}^{p_2} V dp$$

(D)
$$\ln(f_1 f_2) = RT \int_{P_1}^{P_2} V dp$$

38. Zeta potential developed at the surface of solid particle, in the phenomenon of electrophoresis, is expressed by the equation:

(A)
$$\xi = 4\pi\eta\mu_e D$$

(B)
$$\xi = \frac{4\pi\eta\mu_e}{D}$$

(C)
$$\xi = \frac{D}{4\pi\eta\mu_e}$$

- (D) None of these
- 39. The value of limiting current density is given by :

(A)
$$i_d = \frac{D_n F}{\delta} C^{\circ}$$

(B)
$$i_d = \frac{\delta}{D_n F} C^{\circ}$$

(C)
$$i_d = \frac{\delta}{D_n F}$$

(D) None of above

40. The partial molar volume of component 2 in the mixture of 2 component system

is:

(A)
$$V_2, m = \left(\frac{\partial V}{\partial n_2}\right)_{T,P,n_2}$$

(B)
$$V_2, m = \left(\frac{\partial V}{\partial n_1}\right)_{T,P,n_2}$$

(C)
$$V_2$$
, $m = \left(\frac{\partial V}{\partial n_1}\right)_{T,P,n_1}$

(D)
$$V_2, m = \left(\frac{\partial V}{\partial n_2}\right)_{T,P,n_1}$$

खण्ड—ब (बहुविकल्पीय) Section-B (Objective) CHE 507

M.Sc. IInd SEMESTER EXAMINATION, 2022 CHEMISTRY

(Analytical Chemistry)

Credit (4+0)

(CBCS Mode)

	Date (तिथि) :	OMR Sheet)
		5094
अनुक्रमांक (अंकों में): Roll No. (In Figures): अनुक्रमांक (शब्दों में): Roll No. (In Words):		
Time : 1½ Hrs. समय : 1½ घण्टे		Max. Marks : 60 अधिकतम अंक : 60

नोट : पुस्तिका में 40 प्रश्न दिये गये हैं, सभी प्रश्न करने होंगे। प्रत्येक प्रश्न 1.5 अंक का होगा।

Important Instructions:

AFFIX PRESCRIBED

RUBBER STAMP

- The candidate will write his/her Roll Number only at the places provided for, i.e. on the cover page and on the OMR answer sheet at the end and nowhere else.
- 2. Immediately on receipt of the question booklet, the candidate should check up the booklet and ensure that it contains all the pages and that no question is missing. If the candidate finds any discrepancy in the question booklet, he/she should report the invigilator within 10 minutes of the issue of this booklet and a fresh question booklet without any discrepancy be obtained.

महत्वपूर्ण निर्देश :

Paper ID

(To be filled in the

- अभ्यर्थी अपने अनुक्रमांक केवल उन्हीं स्थानों पर लिखेंगे जो इसके लिए दिये गये हैं, अर्थात् प्रश्न पुस्तिका के मुख्य पृष्ठ तथा साथ दिये गये ओ०एम०आर० उत्तर पत्र पर, तथा अन्यत्र कहीं नहीं लिखेंगे।
- 2. प्रश्न पुस्तिका मिलते ही अभ्यार्थी को जाँच करके सुनिश्चित कर लेना चाहिए कि इस पुस्तिका मे पूरे एष्ट हैं और कोई प्रश्न छूटा तो नहीं है। यदि कोई विसगति है तो प्रश्न पुस्तिका मिलने के 10 मिनट के भीतर ही कक्ष परिप्रेक्षक को सूचित करना चाहिए और बिना बुटि की दूसरी प्रश्न पुर्तिका प्राप्त कर लेना चाहिए।

1.	What is the principle of Nephelometry?			
	(A)	Light scattered		
	(B)	Light transmitted		
	(C)	Both (A) and (B)		
	(D)	None of above		
2.	What	What is the principle of tenbidimetry?		
	(A)	Light scattered		
	(B)	Light transmitted		
	(C)	Both (A) and (B)		
	(D)	None of above		
3.	Which	of the following is not a detector used in flame photometers?		
	(A)	Photonic cell		
	(B)	Photoraltaic cell		
	(C)	Photoemissive tube		
	(D)	Chromatogram		
4.	In chromatography which of the following can be mobile phase be made of?			
	(A)	Solid or liquid		
	(B)	Liquid or gas		
	(C)	Gas only		
	(D)	Liquid only		
5.	Which	of the following is used as a carrier gas in gas chromatography?		
	(A)	Carbon dioxide		
	(B)	Oxygen		
	(C)	Helium		
	(D)	Methane		

6.	In reverse phase chromatography, the stationary phase is made of :		
	(A)	Non polar	
	(B)	Polar	
	(C)	Both (A) and (B)	
	(D)	None of above	
7.	Chro	natography with solid stationary phase is called:	
	(A)	Circle chromatography	
	(B)	Square chromatography	
	(C)	Solid chromatography	
	(D)	Adsorption chromatography	
8.	Which	n of these particles are highly penetrating?	
	(A)	Alpha particles	
	(B)	Beta particles	
	(C)	Gamma particles	
	(D)	X-ray	
9.	In the	application of DTA and DSC which of the following parameters is	
		red for the glasses?	
	(A)	Concentration of glass	
	(B)	Solubility of the glass	
	(C)	Cooling temperature	
	(D)	Transition temperature	
10.	DTA (can be used for which of the following process?	
	(A)	Line position of the crystal	
	(B)	Mechanical properties of the crystal	
	(C)	Phase diagram	
	(D)	Catalytic properties of enzymes	

11.	What	is the temperature required for the decomposition of CaCO ₃ in degree
	Celsius	
	(A)	200
	(B)	500
	(C)	300
	(D)	1200
12.	Which	of the following electrodes are often used as counter or auxiliary
	electro	ode in voltammetry?
	(A)	Calomel electrode
	(B)	Platinum eerier
	(C)	Carbon paste
	(D)	Mercury thin film
13.	Which	n of the following is not used as electrode in voltammetry?
	(A)	Auxiliary electrode
	(B)	Reference electrode
	(C)	Working electrode
	(D)	Conducting electrode
14.	In denial cell Zn/Zn SO ₄ acts as:	
	(A)	Cathode
	(B)	Anode
	(C)	Both
	(D)	Reference electrode
15.	The	electrode potentials are calculated by :
	(A)	Ilkovic equation
	(B)	Nernst equation
	(C)	Stokes equation
	(D)	Ohm's law

16.	If the i	on size is decreased in the solution:	
	(A)	Conductance decreases	
	(B)	Conductance increases	
	(C)	Both (A) and (B)	
	(D)	None of the above	
17.	Which	is not applicable for conductometry?	
	(A)	Determination of water content	
	(B)	Purity of water	
	(C)	Ionic product of water	
	(D)	Conductometric titrations	
18.	In the	application of PTA and DSC which of the following parameter is	
	measured for the glasses ?		
	(A)	Concentration of the glass	
	(B)	Solubility of the glass	
	(C)	Cooling temperature	
	(D)	Transition temperature	
19.	Which	of these is not an ion selective electrode?	
	(A)	Thermistors	
	(B)	Glass electrode	
	(C)	Glass pH electrode	
	(D)	Solid state electrode	
20.	Mode	of operation in AFM:	
	(A)	2	
	(B)	3	
	(C)	4	
	(D)	5	

CHE 507

Page - 6

5094

50	94	CHE 507 Page - 7		
	(D)	None of the above		
	(C)	Non polar solvent/non polar column		
	(B)	Polar solvent/non polar column		
	(A)	Polar solvent/non polar solvent		
25.	In reversed phase HPLC there is a:			
	(D)	Carboxylation		
	(C)	Methylation		
	(B)	Hysteresis		
	(A)	Esterification		
	heating?			
	starting with the hydrated materials which of the following step occur first on			
24.	In the	e schematic DTA sequence having reversible and irreversible changes,		
	(D)	None of the above		
	(C)	Ilkovic constant		
	(B)	Capillary constant		
	(A)	Half wave potential		
	known as:			
23.	In Ilk	In Ilkovic equation: $(id)_{max} = 706 n D_{\frac{1}{2}}^{\frac{1}{2}} m_{\frac{2}{3}}^{\frac{1}{6}} C$. The product $m_{\frac{2}{3}}^{\frac{21}{6}}$ is		
	(D)	Frequency		
	(C)	Velocity		
	(B)	Colour		
	(A)	Intensity		
	quanti	tative analysis.		
22.	In a	flame emission photometry the measurement ofis used for		
	(D)	Nozzle mix burner		
	(C)	Total consumption burner		
	(B)	Premix burner		
	(A)	Turbulent burner		
21.	Lamin	ar flow burner used in flame photometers is also known as		

CHE 507

Page - 7

5094

31.	Polaro	graphic cells type of electrochemical method uses which of the following	
	concep	at?	
	(A)	Cyclic reaction	
	(B)	Exothermic reaction	
	(C)	Reversible reaction	
	(D)	Redox- reaction	
32.		is one in which the sensing element is a very thin hydrated glass	
	memb	rane.	
	(A)	Solid state electrode	
	(B)	Glass electrode	
	(C)	Thermistor	
	(D)	Glass pH electrode	
33.	Poten	tiometric bio sensor uses in order to transduce the biological	
	reacti	on into an electrical signal.	
	(A)	Clark oxygen electrode	
	(B)	Ion selective electrode	
	(C)	Thermistors	
	(D)	Colorimetric test strip	
34.	In hy	In hydrogen electrode which material are used as coating of platinum foil ?	
	(A)	Pb	
	(B)	Cu	
	(C)	Platinum black	
	(D)	Fe	
35.	Whic	th device is used to convert physical or chemical energy to electrical	
	energ	gy?	
	(A)	Cell	
	(B)	Galvanometer	
	(C)	ECG	
	(D)	None of these	

36.	Whic	h part of the cell is responsible to between two solution that allows th	
		ment of current in the form of ionic charge?	
	(A)	Electrode	
	(B)	Platinum wire	
	(C)	Salt bridge	
	(D)	None of the above	
37.	Which	Which technique is used to measure emt. ?	
	(A)	Acid-base titration	
	(B)	Mass spectroscopy	
	(C)	TGC	
	(D)	Potentiometry	
38.	Good conductors have many loosely bound:		
	(A)	Protons	
	(B)	Atoms	
	(C)	Molecules	
	(D)	Electrons	
39.	The reciprocal of resistivity of a conductor is:		
	(A)	Potential	
	(B)	Capacitance	
	(C)	Conductivity	
	(D)	None of these	
40.	Cello	constant of an electrolyte cell is	
	(A)	Length × area	
	(B)	Length/area	
	(C)	Area/length	
	(D)	None of these	