

CHE 517 / CHE 518 / CHE 519 M.Sc. IIIrd SEMESTER EXAMINATION, 2022-23 **CHEMISTRY**

(Group-1: CHE 517 – Electrodics and Electrochemical Phenomena)

(Group-2: CHE 518 – Coordination Chemistry)

(Group-3: CHE 519 - Pericyclic and Rearrangement Reactions)

(4+0)

PCC MODE

	(CDCS I			
AFFIX PRESCRIBED RUBBER STAMP	Date (तिथि) :	,		Paper ID (To be filled in the OMR Sheet)
•				8160
अनुक्रमांक (अंकों में) : Roll No. (In Figures) अनुक्रमांक (शब्दों में) :				
Roll No. (In Words) : _				
Time : 1 Hour Max. Marks : 60 समय : 1 घण्टा अधिकतम अंक : 60 नोट : पुस्तिका में 40 प्रश्न दिये गये हैं, सभी प्रश्न करने होंगे। प्रत्येक प्रश्न 1.5 अंक का होगा।				
1. The candidate will write	1 अभागी आसे	e,		
नोट : पुस्तिका में 40 प्रश्न दिखे Important Instr	uctions :		अधि प्रश्न 1.5 अंक महत्वपूर्ण नि	कतम अंक : 60 का होगा। र्देश :

- only at the places provided for, i.e. on the cover page and on the OMR answer sheet at the end and nowhere else.
- 2. Immediately on receipt of the question booklet, the candidate should check up the booklet and ensure that it contains all the pages and that no question is missing. If the candidate finds any discrepancy in the question booklet, he/she should report the invigilator within 10 minutes of the issue of this booklet and a fresh question booklet without any discrepancy be obtained.
- जो इसके लिए दिये गये हैं, अर्थात प्रश्न पुस्तिका के मुख्य पुष्ठ तथा साथ दिये गये ओ०एम०आर० उत्तर पत्र पर, तथा अन्यत्र कहीं नहीं लिखेंगे।
- 2. प्रश्न पुस्तिका मिलते ही अभ्यर्थी को जाँच करके सुनिश्चित कर लेना चाहिए कि इस पुस्तिका में पूरे पुष्ट हैं और कोई प्रश्न छूटा तो नहीं है। यदि कोई विसंगति है तो प्रश्न पुस्तिका मिलने के 10 मिनट के भीतर ही कक्ष परिप्रेक्षक को सूचित करना चाहिए और बिना त्रुटि की दूसरी प्रश्न पुस्तिका प्राप्त कर लेना चाहिए।

(GROUP-1: CHE 517 - Electrodics and Electrochemical Phenomena)

- 1. If q_M is the excess charge density on metal and q_{OHP} is the excess charge density on OHP, then which is correct for Gouy-Chapman model of electrical double layer?
 - $(A) q_{OHP} = -q_M$
 - (B) $q_{OHP} < q_M$
 - (C) $q_{OHP} > q_M$
 - (D) None of the above
- 2. the potential of an electrified interface falls very sharply along the straight line.

 This statement is correct for:
 - (A) Stern model
 - (B) Gauy Chapman model
 - (C) Helmholtz Perrin model
 - (D) All of the above
- 3. If ϕ_M , ϕ_H and ϕ_B respectively stand for potentials at the metal, Helmholtz plane and in the bulk of the solution, then the two potential drops in the stern model of electrified interface may be expressed as:

(A)
$$\phi_M - \phi_B = (\phi_M - \phi_H) + (\phi_B - \phi_H)$$

(B)
$$\phi_M - \phi_B = (\phi_M - \phi_H) + (\phi_H - \phi_B)$$

(C)
$$\phi_B - \phi_M = (\phi_H - \phi_M) + (\phi_H - \phi_B)$$

(D) None of the above

- 4. If C_H and C_G are Helmholtz-perrin capacity and Gauy-Chapman capacity respectivly, then according to stern model the total capacity (C) of the interface is given by:
 - $(A) \qquad \frac{1}{C} = \frac{1}{C_H} + \frac{1}{C_G}$
 - (B) $C = C_H + C_G$
 - (C) $\frac{1}{C} = \frac{1}{C_H} + C_G$
 - (D) None of the above
- 5. If q_S , q_H and q_G are respectively represent the charge on the solution, Helmholtz-Perrin charge and Gouy-Chapman charge, then stern model can be expressed as:
 - $(A) q_s = q_H + q_G$
 - (B) $q_s = q_H q_G$
 - (C) $q_s = q_G q_H$
 - (D) None of the above
- 6. Which of the following models of EDL is known as parallel plate condenser model?
 - (A) Helmholtz-Perrin model
 - (B) Stern model
 - (C) Gouy-Chapman model
 - (D) None of the above
- 7. In Helmholtz-perrin model, if \in_0 and \in_r are the permittivity of free space and dielectric constant of material between plates respectively, and d is the distance between the plates, then the differential capacity (C) is given by:
 - (A) $C = \in_r \in_0 d$
 - (B) $C = \frac{\epsilon_r \epsilon_0}{d}$
 - (C) $C = \frac{d}{\epsilon_r \epsilon_0}$
 - (D) None of the above

- 8. If q_M and q_{OHP} are respectively the excess charge density on the metal and outer Helmholtz plane (OHP), then which is correct for Helmholtz-Perrin model
 - (A) $q_{OHP} > q_M$
 - (B) $q_{OHP} < q_M$
 - $(C) q_{OHP} = -q_M$
 - (D) None of the above
- 9. Which of the following models is known as diffuse double layer theory of EDL?
 - (A) Helmholtz Perrin model
 - (B) Stern Model
 - (C) Gouy Chapman model
 - (D) None of the above
- 10. When the concentration of ions in solution is very large, the stern model of the electrified interface behaves like:
 - (A) Gouy Chapman model
 - (B) Helmholtz Perrin model
 - (C) (A) and (B) both
 - (D) None of the above
- 11. Which of the following is an incorrect statement?
 - (A) Corrosion is an irreversible process
 - (B) Corrosion is an non-spontaneous process
 - (C) Corrosion is an degradation process
 - (D) Corrosion is an spontaneous process
- 12. What is corrosion?
 - (A) Destruction of a material
 - (B) Conversion of metal atoms to metallic ions
 - (C) Conversion of metal ions to metal atoms
 - (D) Destruction of materials involving in the conversion of metal atoms into metal ions.

13.	Which	of the following are necessary in the process of corrosion?
	(A)	Anode
	(B)	Cathode
	(C)	Electrolyte
	(D)	Anode, Cathode and Electrolyte
14.	. ,	sion involves reactions.
	(A)	Oxidation
	(B)	Reduction
	(C)	Displacement
	(D)	Both oxidation and reduction
15.	` '	rochemical corrosion takes place on:
	(A)	Anodic area
	(B)	Cathodic are
	(C)	Near cathode
	(D)	Near anode
16.	• /	ng can be prevented by:
	(A)	Coating the object with paint
	(B)	Coating the object with grease
	(C)	Galvanizing
	(D)	All of the above
17.	Which of the following factor influences the rate and extent of corrosion?	
	(A)	Nature of metal only
	(B)	Nature of the environment only
	(C)	Nature of metal and environment both
	(D)	Nature of reaction

- Excessive corrosion of metal takes place if corrosion product is: 18. (A) Volatile (B) Non-volatile Both volatile and non-volatile (C) Initially volatile and then non-volatile (D) 19. The specific volume ratios of W, Cr and Ni are 3.6, 2.0 and 1.6 respectively. Which of them will have the least rate of corrosion? (A) Ni (B) Cr(C) W All will have the same rate of corrosion (D) 20. Which of the following is not associated with the nature of the environment for
 - the corrosion?
 (A) Humidity
 - (B) Temperature
 - (C) Effects of pH
 - (D) Volatility of corrosion products
- 21. Rapid corrosion can be expected when the oxidizing and reducing couples have:
 - (A) Large difference of electrode potentials
 - (B) Small difference of electrode potentials
 - (C) No difference of electrode potentials
 - (D) All of the above
- 22. For non-equilibrium reaction $M = \frac{r_1}{r_2} M^{n+} + n\overline{e}$. Which is correct for anodic polarization?
 - (A) $r_1 > r_2$ and $i_c > i_a$
 - (B) $r_1 < r_2 \text{ and } i_c > i_a$
 - (C) $r_1 > r_2$ and $i_a > i_c$
 - (D) $r_1 < r_2 \text{ and } i_a > i_c$

- 23. Polarization resistance in defined as:
 - $R_P = \left(\frac{\Delta E}{\Delta P}\right)_{\Delta E \to 0}$
 - (B) $R_P = \left(\frac{\Delta E}{\Delta T}\right)_{\Delta P \to 0}$
 - (C) $R_P = \left(\frac{\Delta E}{\Delta i}\right)_{\Delta E \to 0}$
 - (D) $R_P = \left(\frac{\Delta i}{\Delta E}\right)_{i \to 0}$
- 24. The expression for the corrosion current, $I_{corr} = \overline{J} \overline{A} e^{fE/4}$ shows that the rate of corrosion depends on the :
 - (A) Surfaces exposed
 - (B) Sufaces covered
 - (C) (A) and (B) both
 - (D) None of the above
- 25. Which of the following is more correct regarding polarization?
 - (A) It results from the change in net current flow
 - (B) It is the deviation from equilibrium potential
 - (C) The value of polarization is measured in terms of electron volts
 - (D) It is the deviation of equilibrium potential because of excess flow of current in anode or cathode and its value is measured in terms of overvoltage
- 26. The undesirable destruction or alteration in non-metallic materials by weathering or other agents is:
 - (A) Generally classified as corrosion
 - (B) Is not generally classified as corrosion
 - (C) (A) and (B) both
 - (D) None of the above

- 27. Which is more correct in the following?
 - (A) Corrosion is the extraction of metals.
 - (B) Metals have a natural tendency to convert back to its natural thermodynamically stable state (combined state)
 - (C) Metals do not exist in nature as their compounds.
 - (D) None of the above
- 28. The process of corrosion is:
 - (A) Slow
 - (B) Fast
 - (C) Very fast
 - (D) None of the above
- 29. Which is the correct statement regarding the corrosion in the following?
 - (A) Corrosion occurs due to existence of separate anodic and cathodic areas between which current flows through the conducting solution
 - (B) At anodic areas, readuciton reaction takes place.
 - (C) At cathodic areas, oxidation reaction takes place.
 - (D) Corrosion always occurs at cathodic areas.
- 30. Corrosion in which hydrogen is evolved is called:
 - (A) Absorption of oxygen type of corrosion
 - (B) Hydrogen evolution type of corrosion
 - (C) Corrosion of hydrogen
 - (D) None of the above
- 31. In hydrogen evolution type corrosion:
 - (A) Anodes are very large areas
 - (B) Cathodes are very large areas
 - (C) Anodes are small areas
 - (D) Cathodes are small areas

- 32. In the presence of dissolved oxygen and in neutral or alkaline medium, the cathodic reaction in electrochemical corrosion is:
 - (A) $2H_2O + O_2 + 4\overline{e} \rightarrow 4\overline{O}H$
 - (B) $2H_2 + 2O_2 + 4\overline{e} \rightarrow 4\overline{O}H$
 - (C) $2H_2O + O_2 \rightarrow 4OH$
 - (D) None of the above
- 33. Presence of impurities in metals:
 - (A) Increases the chances of corrosion
 - (B) Decreases the chances of corrosion
 - (C) Do not affect the corrosion
 - (D) None of the above
- 34. The rate of corrosion is measured by the current of metal ions leaving the metal surface:
 - (A) In the anodic region
 - (B) In the cathodic region
 - (C) (A) and (B) both
 - (D) None of the above
- 35. When dealing with the diffusion of electrolytes, what two forces must yo consider?
 - (A) Electrical and chemical forces both
 - (B) Gravitational and chemical forces both
 - (C) Electrical and nuclear forces both
 - (D) Gravitational and nuclear forces both

- 36. The total equation describes the dependence of current for an electrolytic process to:
 - (A) Overpotential
 - (B) Electrode potential
 - (C) Zeta potential
 - (D) None of the above
- 37. For a redox reaction at the equilibrium potential, electron transfer processes continue at electrode-solution interface in both directions. The cathodic current is balanced by the anodic current. This ongoing current in both directions is called:
 - (A) Exchange current density
 - (B) Electron density
 - (C) Exchange density
 - (D) None of the above
- 38. Exchange current density depends critically:
 - (A) Only on the nature of the electrode
 - (B) On the nature and structure of electrode
 - (C) Nature, structure and surface roughness of electrode
 - (D) None of the above
- 39. At the corrosion potential:
 - (A) $\Sigma I_a + \Sigma I_c = 0$
 - (B) $\Sigma I_a \Sigma I_c = 0$
 - (C) $\Sigma I_a = \Sigma I_c$
 - (D) $\Sigma I_c \Sigma I_a = 0$
- 40. Buter-Volmer equation describes the kinetics of a single half reaction at potentials above and below:
 - (A) The reversible potential for that reaction
 - (B) The irreversible potential for that reaction
 - (C) The equilibrium state for that reaction
 - (D) None of the above

GROUP-2: CHE 518 – Coordination Chemistry

- 1. According to Irving-William series; the correct sequence is :
 - (A) $Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$
 - (B) $Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$
 - (C) $Ca^{2+} > Ni^{2+} > Cu^{2+} > Zn^{2+}$
 - (D) None of the above
- 2. The most stable complex is:
 - (A) $[Cu(en)_3]^{2+}$
 - (B) $cis[Cu(en)_2(H_2O)_2]^{2+}$
 - (C) $trans[Cu(en)_2(H_2O)_2]^{2+}$
 - (D) None of the above
- 3. Which one of the following octahedral complex will be diotorted?
 - (A) $[Mn(H_2O)_6]^{2+}$
 - (B) $[Fe(H_2O)_6]^{3+}$
 - (C) $[Cr(H_2O)_6]^{2+}$
 - (D) $[Cr(H_2O)_6]^{3+}$
- 4. Which one of the following complex will not have ideal octahedral geometry?
 - (A) $[Ni(H_2O)_6]^{2+}$
 - (B) $[Mn(H_2O)_6]^{2+}$
 - (C) $[Ti(H_2O)_6]^{3+}$
 - (D) $[Cr(H_2O)_6]^{3+}$
- 5. A compound absorbs the radiation of red colour, the colour of compound will be?
 - (A) Red
 - (B) Green
 - (C) Blue
 - (D) Violet

6. Fill in the blank:

the intensity of colour of $[CoCl_4]^{2+}$ is _____ than that of $[Co(H_2O)_6]^{2+}$.

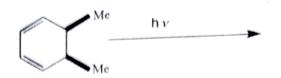
- (A) lower
- (B) greater
- (C) equal
- (D) None of the above
- 7. The transitions in which the change in azimuthal quantum number is ± 1 will be?
 - (A) Laporte forbidden
 - (B) Laporte allowed
 - (C) Both (A) and (B)
 - (D) None of the above
 - 8. The total orbital angular momentum is given by ?
 - (A) $\sqrt{L} \frac{h}{2\pi}$
 - (B) $\sqrt{L(L+1)} \frac{h}{2\pi}$
 - (C) $\sqrt{(L+1)}\frac{h}{2\pi}$
 - (D) None of the above
 - 9. Total number of microstates for d^2 configuration?
 - (A) 15
 - (B) 30
 - (C) 45
 - (D) 50
 - 10. The total spin angular momentum is given by:
 - (A) $\sqrt{S} \frac{h}{2\pi}$
 - (B) $\sqrt{S(SH)} \frac{h}{2\pi}$
 - (C) $\sqrt{(SH)} \frac{h}{2\pi}$
 - (D) None of the above

11	. The	total number of microstates for 3F is:
	(A)	15
	(B)	21
	(C)	9
	(D)	12
12.	For a	a given configuration, the ground state term will have spin multiplicity.
	(A)	Lowest
	(B)	Equal
	(C)	Highest
	(D)	None of the above
13.	Whic	ch one will be the ground state term for p^2 configuration?
	(A)	$3p_1$
	(B)	$3p_0$
	(C)	$3p_2$
	(D)	$1p_0$
14.	The g	ground state term for high spin d^5 configuration is:
	(A)	3F
	(B)	$5_{\mathcal{S}}$
	(C)	6_S
	(D)	5_{F}
15.	The co	omple.x $[Co(H_2O)_6]^{2+}$ is:
	(A)	High spin, paramagnetic, coloured
	(B)	Low spin diamagnetic
	(C)	Low spin paramagnetic
	(D)	High spin, diamagnetic, colourless

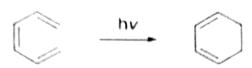
- 16. Tanabe-Sugano diagrams are obtained by plotting?
 - (A) E against Δ_0
 - (B) E/B against Δ_0/B
 - (C) $E \text{ against } \Delta_0/B$
 - (D) None of the above
- 17. Splitting of "F" term in octahedral field will be:
 - (A) T_{2g} and E_g
 - (B) $A_{1g}, E_g, T_{1g} \text{ and } T_{2g}$
 - (C) T_{1g} , T_{2g} and A_{2g}
 - (D) None of the above
- 18. The splitting of "G" term in octahedral field will be:
 - (A) E_g , $2T_{1g}$, T_{2g}
 - (B) A_{1g} , E_g , T_{1g} and T_{2g}
 - (C) T_{1g} , T_{2g} and A_{2g}
 - (D) None of the above
- 19. If the $\Delta L = 0$, the transition will be:
 - (A) Laporte allowed
 - (B) Laporte forbidden
 - (C) Both (A) and (B)
 - (D) None of the above
- 20. Transition between states of different multiplicitis are :
 - (A) Spin allowed
 - (B) Spin forbidden
 - (C) Not defined
 - (D) None of the above

- 21. The spectroscopic ground state term and the total number of electronic transitions in $[T_i(H_2O)_6]^{2+}$ ion are:
 - (A) $3T_{1g}$ and 2
 - (B) $3A_{2g}$ and 3
 - (C) $3T_{1g}$ and 3
 - (D) $3A_{2g}$ and 2
- 22. The ground state term for t_{2g}^3 , eg^2 in octahedral field is:
 - (A) $3A_{2a}$
 - (B) $3E_a$
 - (C) $4T_{1,g}$
 - (D) $2A_{1g}$
- 23. Which one of the following complex will share $3T_{2g} \leftarrow 3A_{2g}$ transition as the lowest energy band on its electronic spectrum?
 - (A) $[C_r(NH_3)_6]^{3+}$
 - (B) $[F_e F_6]^{3-}$
 - (C) $[C_0(NH_3)_6]^{3+}$
 - (D) $[N_i(H_2O)_6]^{2+}$
- 24. For d^2 electronic configuration in octahedral field $T_{2g} \times T_{2g}$ will be:
 - (A) $3T_{1g} + {}^2T_{2g} + {}^1E_g + {}^1A_{1g}$
 - (B) ${}^{1}E_{g} + {}^{1}A_{1g} + {}^{1}T_{1g}$
 - (C) ${}^3T_{2g} + {}^2T_{1g} + {}^1E_g$
 - (D) None of the above
- 25. If I=current, H=magnetic flux, Me=charge of electron and μ_0 =magnetic susceptibility, the magnetic intensity can be derived by ?
 - (A) I/H
 - (B) B/I
 - (C) Me/H
 - (D) B/μ_0

- 26. Specific magnetic susceptibility in derived by equation $x_m = \frac{x}{p}$ here p is?
 - (A) Area
 - (B) Charge
 - (C) Length
 - (D) Density
- 27. Magnetic permeability of diamagnet is:
 - (A) Greater than free space value
 - (B) Zero
 - (C) Less than free space value
 - (D) None of the above
- 28. In Langevin theory of diamagnetion, the equation $\mu = -\frac{ze^2B}{4m}\langle P^2 \rangle$ the $\langle P^2 \rangle$ represents?
 - (A) Density
 - (B) Weight
 - (C) Length
 - (D) Mean square chloral
- 29. In Curie-Weiss Law can be written as:
 - (A) $X_m \propto \frac{1}{1}$
 - (B) $X_m = \frac{c}{T}$
 - (C) $X_m = \frac{c}{(T-\theta)}$
 - (D) None of the above
- 30. The orbital angular momentum about an axis is associated with ability to rotate?
 - (A) Molecule
 - (B) Molecular orbital
 - (C) Atomic orbital
 - (D) (B) and (C) both


- 31. The d_{xg} orbital can be rotated about z axis by $\frac{2\pi}{8}$ to give?
 - (A) d_{xy}
 - (B) d_{xz}
 - (C) $d_x^2 y^2$
 - (D) None of the above
- 32. In a cubic ligand field the orbital angular momentum is not quenched for term?
 - (A) A
 - (B) E
 - (C) T
 - (D) B
- 33. Which statement in true for crystal field theory?
 - (A) CFSE is decided by electrons in vulence shell
 - (B) CFSE is decided by electrons of sand p orbital
 - (C) CFSE is decided by electrons of d orbital
 - (D) None of the above
- 34. Crystal field theory is not able to explain:
 - (A) Geometry of complex
 - (B) Optical property of complex
 - (C) Magnetic property of complex
 - (D) π -bonding in coplex
- 35. The reduction of "B" value can be reported in terms of:
 - (A) Electrical charge
 - (B) Curries effect
 - (C) Lortenz effect
 - (D) Nephelauxetic effect

- 36. The correct order of Nephelauxetic effect for NH_3 , en and NCS^- ligands will be:
 - (A) $NH_3 = en < NCS^-$
 - (B) $NH_3 = \langle en \langle NCS^- \rangle$
 - (C) $NH_3 = \langle en \rangle NCS^-$
 - (D) $NH_3 > en = NCS^-$
- 37. Which statement is true for Nephelauxetic effect?
 - (A) Wave nature of electron
 - (B) Particle nature of electron
 - (C) Electron cloud
 - (D) (A) and (C) both
- 38. The correct order of Nephelauxetic effect for Mn^{2+} and Mn^{4+} ion will be:
 - (A) $Mn^{2+} < Mn^{4+}$
 - (B) $Mn^{2+} \cong Mn^{4+}$
 - (C) $Mn^{2+} > Mn^{4+}$
 - (D) None of the above
- 39. In an octahedral field the p_x , p_y and p_z orbital will transform as ?
 - (A) $T_{1,g}$
 - (B) T_{2g}
 - (C) T_{1u}
 - (D) T_{2n}
- 40. John-Teller distortion will be seen in metals having:
 - (A) Vacant d-orbital
 - (B) Partially filled d-orbital
 - (C) Half filled d-orbital
 - (D) None of the above


GROUP-3: CHE 519 - Pericyclic and Rearrangement Reactions

1. The product obtained during the following photochemical reaction is:

2. The following tetraene upon photolysis gives:

 According to Fronteir Molecular Orbital (FMO) theory, the Highest Occupied Molecular Orbital (HOMO) of hexatriene in the following reaction is:

4. The conditions A - B, required for the following pericylic reactions are:

- (A) $A = \Delta$; $B = \Delta$
- (B) A = hv; $B = \Delta$
- (C) A = hv; B = hv
- (D) $A = \Delta$; B = hv
- 5. The number of nodes present in the highest occupied molecular orbital of 1,3,5-hexatriene in its ground state is:
 - (A) One
 - (B) Two
 - (C) Three
 - (D) Four

6. The most appropriate mode of cylisation in the following transformation is:

- (A) Conrotatory in photochemical; and disrotatory in thermal conditions
- (B) Conrotatory in thermal; and disrotatory in photochemical conditions
- (C) Conrotatory in thermal; and conrotatory in photochemical conditions
- (D) Disrotatory in photochemical; and disrotatory in thermal conditions
- 7. The product formed and the process involed in the following reaction is:

8. The major products A and B in the following reaction sequence are:

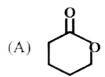
$$(A) \quad A = \bigcup_{\underline{i}} \quad \underline{H} \quad (A)$$

$$(B) \quad A = \bigcup_{\underline{\underline{\underline{I}}} \quad \underline{\underline{\underline{H}}} \quad \underline{\underline{\underline{\underline{H}}} \quad \underline{\underline{\underline{H}}} \quad \underline$$

$$(C) \qquad A = \qquad \qquad B = \qquad \qquad B = \qquad \qquad B$$

$$(D) \quad A = \bigcup_{\mathbf{H}} \mathbf{B} = \bigcup_{\mathbf{H}} \mathbf{A} \mathbf{C}$$

9. In the following concerted reaction, the product is formed by a:


- (A) 6π disrotatory electrocylization
- (B) 4π disrotatory electrocylization
- (C) 6π conrotatory electrocylization
- (D) 4π conrotatory electrocylization

10. The concerted photochemical reaction two olefins leading to a cyclobutane ring

is:

- (A) $\pi^2 s + \pi^2 a$ cycloaddition
- (B) $\pi^2 s + \pi^2 s$ cycloaddition
- (C) $\sigma^2 s + \sigma^2 s$ cycloaddition
- (D) $\pi^2 s \pi^2 a$ cycloaddition
- 11. Nitrogen ylide formation takes place in which rearrangement?
 - (A) Favorskii
 - (B) Wittig
 - (C) Steven's
 - (D) Wagner-Meerwin

12.

(C)
$$\bigoplus^{\mathbf{O}}$$

$$(B) \qquad \begin{array}{c} \textbf{MeO} \\ \textbf{OMe} \\ \textbf{Br} \end{array}$$

$$(A) \quad Ph - C - NH_2$$

$$H$$

- 15. Criegee intermediate is formed in which rearrangement?
 - (A) Lossen
 - (B) Schmidt
 - (C) Baeyer-Villiger
 - (D) Curtius
- 16. In curtius rearrangement, which intermediate is formed?
 - (A) Carbocation
 - (B) Ketene
 - (C) Isocyanate
 - (D) Carbanion
- 17. Stabilization of a carbocation by alkyl groups involves hyperconjugation between:
 - (A) a filled $C H \sigma$ bond with a vacant π^* orbital
 - (B) a vacant σ^* orbital with the vacant p orbital
 - (C) a filled $C H \sigma$ bond with a vacant p orbital
 - (D) a filled $C H\sigma$ bond with a filled π orbital
- 18. The product from the reaction below is the result of a:

- (A) 1, 2 methyl shift
- (B) Carbene
- (C) Bromonium ion
- (D) 1, 2 hydride shift

19. Which is the major product of the following reaction of an acyl azide?

$$(B) \sum_{i=1}^{N} \frac{NH_2}{i}$$

$$(C) \qquad \begin{array}{c} \text{Ph} & \text{O} \\ \text{OH} \end{array}$$

$$(D) \quad \begin{array}{c} H \\ \\ \end{array} \begin{array}{c} O \\ Ph \end{array}$$

20. Select the incorrect statement from the given statement :

- (A) HOMO is a highest occupied molecular orbital
- (B) In conrotatory motion bonds rotates in the same direction
- (C) Diels-Alder reaction is [4 + 2] cycloaddition
- (D) In the suprafacial reaction both bonds are formed on the opposite face of the component.

This is reaction is an example of:

- (A) [2+2] cycloaddition
- (B) [4+2] cycloaddition
- (C) [2+1] cycloaddition
- (D) None of the above

- Ene reaction is a: 22. 2π electron electrocylic reaction (A) 4π electron electrocylic reaction (B) 6π electron electrocylic reaction (C) None of the above (D) Diels-Alder reaction normally yields endoadduct as a major product. This is due 23. to: Higher stability of the product (A) Faster rate of formation of the endoproduct (B) Steric hindrance (C) Secondary orbital interactions between a diene and a dienophile (D) In a reaction of cyclopentadiene with acrylate ester giving Diels-Alder reaction 24. products, the interacting frontier orbitals are: HOMO of diene and LUMO of dienophile (A) (B) HOMO of dienophile and LUMO of diene HOMO of diene and HOMO of dienophile (C) LUMO of diene and LUMO of dienophile (D) In a cycloaddition reaction, if both the bonds to a component are formed on the 25. same face, the process is termed as: (A) Suprafacial (B) Antrafacial Supra-suprafacial (C) (D) Anta-antrafacial
- 26. Claisen rearrangement is an example of:
 - (A) [2,3] sigmatropic rearrangement
 - (B) [2,4] sigmatropic rearrangement
 - (C) [1,5] sigmatropic rearrangement
 - (D) [3,3] sigmatropic rearrangement

- 27. The thermal ring opening reaction of cyclobutenes are :
 - (A) Conrotatory
 - (B) Disrotatory
 - (C) Conrotatory or disrotatory depending on the temperature at which reaction is carried out
 - (D) Cannot be predicted
 - 28. The electro cyclic reaction for ground state of hexatrienes:
 - (A) Conrotatory
 - (B) Disrotatory
 - (C) Conrotatory or disrotatory depending on the temperature at which reaction is carried out
 - (D) Cannot be predicted
 - 29. The product Y and Z are formed, respectively, from x via ::

$$\bigcup_{\mathbf{H}}^{\mathbf{D}} \mathbf{x} \bigcup_{\mathbf{D}}^{\mathbf{D}} \mathbf{y}$$

- (A) hv conrotatory opening and Δ disrotatory opening
- (B) hv disrotatory opening and Δ conrotatory opening
- (C) Δ conrotatory opening and hv disrotatory opening
- (D) Δ disrotatory opening and $h\nu$ conrotatory opening
- 30. Favorskii rearrangement of ∝ ∝' dihaloketone with alkoxide produces _____ product.
 - (A) \propto , β unsaturated ester
 - (B) \propto , β unsaturated amide
 - (C) Ring compound
 - (D) β , γ unsaturated ester

31	l. Th	e cyclohexanone can be converted to lactone by using enzyme.
	(A)	
	(B)	Cyclohexanone deoxygenase
	(C)	Zymase
	(D)	Cyclohexanone hydrogenase
32.	Ben	zophenone is converted to phenyl benzoate by using reagent.
	(A)	Perbenzoic Acid
	(B)	Soda Azide
	(C)	Dil.KMnO ₄
	(D)	SOCl ₂
33.	The	following conversion can be achieved by rearrangement.
		Cyclohexanone Oxime $\rightarrow \varepsilon$ - caprolactum
	(A)	Hofmann
	(B)	Curtius
	(C)	Schmidt
	(D)	Beckmann
34.	The r	earrangement involve formation of cyclopropane intermediate is:
	(A)	Perycyclic reactions
	(B)	Favourskii rearrangement
	(C)	Beckmann rearrangement
	(D)	Hoffmann rearrangement
35.	Beckn	nann rearrangement is a type of rearrangement.
	(A)	1, 2 - rearrangement
	(B)	1, 3 - rearrangement
	(C)	1, 4 - rearrangement
	(D)	1, 5 – rearrangement
	•	realigement

30.	wagi	Classical rearrangement involve:
	(A)	Classical carbocation
	(B)	Non-classical carbocation
	(C)	Nitrene
	(D)	Carbene
37.	Whic	ch type of catalytic reaction, does Dienone phenol rearrangement reaction
	belor	ng?
	(A)	Acid catalysed
	(B)	Base catalysed
	(C)	Acidic
	(D)	Neutral
38.	In w	hich Favorskii rearrangement occurs ?
	(A)	Acidic
	(B)	Basic
	(C)	Neutral
	(D)	Alkaline
39.	What	is the main difference between Hoffmann and curtius rearrangement?
	(A)	Products are different
	(B)	Intermediate formed is different
	(C)	Reactants are different
	(D)	Isomers
40.	Which	types of isomers are formed in rearrangement reaction?
	(A)	Structural isomers
	(B)	Geometrical isomers
	(C)	Optical isomer
	(D)	Conformational isomers
